10 research outputs found

    Prenatal Diagnosis of Down Syndrome

    Get PDF
    The chapter’s contribution to the book explores the prenatal modalities to diagnose Down syndrome (DS). The current knowledge in the field of genetic sonographic markers is presented, along the performance of current policies as well as the potential of new emerging genetic techniques. Besides the screening or testing pregnancy algorithms, the chapter describes the power of prenatal diagnostic techniques, namely, the advantages and the complications of the invasive genetic maneuvers. The progress in prenatal diagnosis of Down syndrome is one of the most important in prenatal medicine in the last decades. The methods vary in terms of detection rates, acceptability, costs, and potential complications. Although the early genetic screening was improved, ultrasound evaluation should not be dismissed, as the first-trimester sonography has the potential to diagnose the majority of major fetal abnormalities

    Birth Control and Family Planning Using Intrauterine Devices (IUDs)

    Get PDF
    Intrauterine devices (IUDs) represent one of the most important methods used for contraception. The methods vary in terms of efficiency, acceptability, costs, and potential complications. Early methods have been improved, and ultrasound (US) evaluation has become an important tool to diagnose the clear majority of IUDs complications. This chapter presents a comprehensive and up-to-date status regarding the use of intrauterine devices (IUDs) for birth control and family planning. The topics discussed in the manuscript will involve the current knowledge on the history, types, mechanisms, health benefits, and risks. More, the present paper presents the medical techniques for inserting and removing a IUD, and the role of US to confirm proper IUD placement. Also, this chapter offers practical guidance in managing problems of continuing users and discusses the clinical circumstances that require reconsideration of the contraception methods

    Fetal Abdominal Wall Defects

    Get PDF
    Abdominal wall defects (AWDs) represent a group of congenital anomalies that can be diagnosed early during pregnancy even at the time of the first trimester assessment, with direct impact on pre- and postnatal fetal prognosis and management decisions. The most frequent anomalies in this group are gastroschisis and omphalocele. The key method available, that allows the detection of any deviation from the physiologic midgut herniation, is the ultrasound (US) assessment. A precise algorithmic scan approach is imposed not only for an accurate detection of any abdominal wall defect, but also for a proper location of the defect and of the spatial relation to the umbilical cord insertion, fundamentally important in differentiating among various malformations. Other structural or chromosomal anomalies should be excluded. Suitable multidisciplinary counseling should be considered. Unfortunately, in utero surgery, in these cases, has not been yet successful. Postnatal early interventions are usually required in specialized pediatric centers

    Abnormalities of the Placenta

    Get PDF
    The placenta is considered an important organ that evolves with the implantation of the blastocyst throughout the pregnancy. The placenta has an essential role in functions such as nutrition, excretion, and immunologic and endocrine function. The normal placenta is a round- or oval-shaped organ that attaches to the uterine wall and has roughly 22 cm in diameter and a thickness of about 2–2.5 cm and weighs about one sixth of the fetal birth weight. Thus, a normal development of the placenta is important for an uneventful embryonic and fetal development. Consequently, the placenta abnormalities can range from structural anomalies, to function disorders, to site of implantation abnormalities

    Congenital Abnormalities of the Fetal Heart

    Get PDF
    Congenital heart defects (CHDs) are the most frequent congenital malformations, the costliest hospital admissions for structural defects and the leading cause of infant general and malformations related mortality. Fetal echocardiography represents a skilled ultrasound examination, because of the complexity, physiological and structural particularities of the fetal heart. The efficiency of the cardiac scan is reported with great variation, depending on the scanning protocol, examiner experience and equipment quality but CHDs remains among the most frequently missed congenital abnormalities

    Intrauterine Transmission of Hepatitis C Virus Concomitant with Isolated Severe Fetal Ascites

    No full text
    Background: Perinatal Hepatitis C Virus (HCV) transmission occurs in 4–7% of the cases with detectable viremia at delivery. HCV testing in pregnancy is recommended. The fetal infection was previously described as asymptomatic although there are two cases, including this one, to report the presence of isolated fetal ascites in HCV infected fetuses. Case report: A 42-year-old patient, 3G, 3P, presented in the Emergency Room for painful uterine contraction. The third-trimester ultrasound examination noted severe fetal ascites, accompanied by hyperechoic bowels and polyhydramnios. The diagnosis required a detailed ultrasound exam, invasive testing (amniocentesis, cordocentesis, and fetal paracentesis), and a complete workup. The mother tested positive for HCV antibodies, and the fetal cord blood tested positive for HCV RNA. The ascites resolved after paracentesis, and the gastrointestinal and respiratory functions markedly improved. The fetus was delivered at term in good condition. Conclusions: The etiology of isolated fetal ascites is broad. This case may indicate that intrauterine HCV transmission is a potential cause of isolated fetal ascites in the absence of other explanation, and isolated fetal ascites can be the only sign revealed on a routine examination. We suspected, having no other detected cause for ascites, the intrauterine transmission of HCV. Invasive procedures, such as paracentesis, are required for abdominal decompression to manage isolated fetal ascites, as it may be a saving procedure. A genetic investigation is needed, and a good neonatal outcome is expected in the absence of fetal structural or genetic abnormalities, as in our case

    First Trimester Ultrasound Detection of Fetal Central Nervous System Anomalies

    No full text
    Objective: To evaluate the potential of the first-trimester ultrasound (US) features for the detection of central nervous system (CNS) anomalies. Methods/Methodology: This is a prospective one-center three-year study. Unselected singleton pregnant women were examined using an extended first-trimester anomaly scan (FTAS) that included the CNS assessment: the calvaria shape, the septum (falx cerebri), the aspect of the lateral ventricles, the presence of the third ventricle and aqueduct of Sylvius (AS) and the posterior brain morphometry: the fourth ventricle, namely intracranial translucency (IT), brain stem/brain stem–occipital bone ratio (BS/BSOB) and cisterna magna (CM). The spine and underlying skin were also evaluated. The cases were also followed during the second and third trimesters of pregnancy and at delivery. FTAS efficiency to detect major CNS abnormalities was calculated. Results: We detected 17 cases with CNS major abnormalities in a population of 1943 first-trimester (FT) fetuses, including spina bifida with myelomeningocele, exencephaly-anencephaly, holoprosencephaly, hydrocephaly, cephalocele and Dandy-Walker malformation. The CNS features in the abnormal group are presented. In the second trimester (ST), we further diagnosed cases of corpus callosum agenesis, cerebellar hypoplasia, vein of Galen aneurysm and fetal infection features (ventriculomegaly, intraventricular bands, intraventricular cyst and hyperechoic foci), all declared normal at the FTAS. During the third trimester (TT) scan we identified a massive fetal cerebral haemorrhage absent at previous investigations. We report a detection rate of 72.7% of fetal brain anomalies in the FT using the proposed CNS parameters. The sensitivity of the examination protocol was 72.7%, and the specificity was 100%. Conclusion: A detailed FT CNS scan is feasible and efficient. The majority of cases of major CNS abnormalities can be detected early in pregnancy. The visualization rates of the CNS parameters in the FT are great with short, if any, additional investigation time. FT cerebral disorders such as haemorrhage or infections were missed in the FT even when an extended evaluation protocol was used

    Uterine Perforation as a Complication of the Intrauterine Procedures Causing Omentum Incarceration: A Review

    No full text
    Objective: Omentum involvement resulting from uterine perforation is a rare complication following intrauterine procedures that might require immediate intervention due to severe ischemic consequences. This review examines the prevalence of this complication, risk factors, the mode and timing of diagnosis, the proper management and the outcome. Methods: A systematic literature search was conducted on PubMed, PubMed Central and Scopus using uterine perforation, D&C, abortion and omentum as keywords. The exclusion criteria included the presence of the uterus or placenta’s malignancy and uterine perforation following delivery or caused by an intrauterine device. Results: The review included 11 articles from 133 screened papers. We identified 12 cases that three evaluators further analysed. We also present the case of a 32-year-old woman diagnosed with uterine perforation and omentum involvement. The patient underwent a hysteroscopic procedure with resectioning the protruding omentum into the uterine cavity, followed by intrauterine device insertion. Conclusion: This paper highlights the importance of a comprehensive gynaecological evaluation following a D&C procedure that includes a thorough clinical examination and a detailed ultrasound assessment. Healthcare providers should not overlook the diagnosis of omentum involvement in the presence of a history of intrauterine procedures

    Cytogenetic Analysis of Sporadic First-Trimester Miscarriage Specimens Using Karyotyping and QF-PCR: A Retrospective Romanian Cohort Study

    No full text
    It is well known that first-trimester miscarriages are associated with chromosome abnormalities, with numerical chromosome abnormalities being the ones most commonly detected. Conventional karyotyping is still considered the gold standard in the analysis of products of conception, despite the extended use of molecular genetic techniques. However, conventional karyotyping is a laborious and time-consuming method, with a limited resolution of 5–10 Mb and hampered by maternal cell contamination and culture failure. The aim of our study was to assess the type and frequency of chromosomal abnormalities detected by conventional karyotyping in specimens of sporadic first-trimester miscarriages in a Romanian cohort, using QF-PCR to exclude maternal cell contamination. Long-term cultures were established and standard protocols were applied for cell harvesting, slide preparation, and GTG banding. All samples with 46,XX karyotype were tested for maternal cell contamination by QF-PCR, comparing multiple microsatellite markers in maternal blood with cell culture and tissue samples. Out of the initial 311 specimens collected from patients with sporadic first-trimester miscarriages, a total of 230 samples were successfully analyzed after the exclusion of 81 specimens based on unsuitable sampling, culture failure, or QF-PCR-proven maternal cell contamination. Chromosome abnormalities were detected in 135 cases (58.7%), with the most common type being single autosomal trisomy (71/135—52.6%), followed by monosomy (monosomy X being the only one detected, 24/135—17.8%), and polyploidy (23/135—17.0%). The subgroup analysis based on maternal age showed a statistically significant higher rate of single trisomy for women aged 35 years or older (40.3%) compared to the young maternal age group (26.1%) (p = 0.029). In conclusion, the combination of conventional karyotyping and QF-PCR can lead to an increased chromosome abnormality detection rate in first-trimester miscarriages. Our study provides reliable information for the genetic counseling of patients with first-trimester miscarriages, and further large-scale studies using different genetic techniques are required

    Ductus Venosus Agenesis and Portal System Anomalies—Association and Outcome

    No full text
    To evaluate the prenatal diagnosis of agenesis of ductus venosus (ADV) and portal venous system (PVS) anomalies and describe the outcome of these cases, either isolated or associated. We evaluated the intrahepatic vascular system regarding the presence of normal umbilical drainage and PVS characteristics in the second and third trimester of pregnancy. The associated anomalies and umbilical venous drainage were noted. Follow-up was performed at six months follow-up. Ultrasonography was performed in 3517 cases. A total of 19 cases were prenatally diagnosed: 18 ADV cases, seven abnormal PVS cases, and six associations of the two anomalies. We noted an incidence of 5.1‰ and 1.9‰ for ADV and PVS anomalies, respectively. Out of the 18 ADV cases, 27.7% were isolated. Five cases (26.3%) presented genetic anomalies. PVS anomalies were found in 33.3% of the ADV cases. ADV was present in 85.7% of the PVS anomalies. DV and PVS abnormalities were found with a higher than reported frequency. Normal DV is involved in the normal development of the PVS. Additional fetal anomalies are the best predictor for the outcome of ADV cases. Evaluation of PVS represents a powerful predictor for ADV cases and addresses the long-term prognosis
    corecore